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The problem of determining the maximum value of y,,,(T) of the particular 

solution of the differential equation L{y(t) ] = f(t) subject to the con- 

ditions { f(t) < MO, 0 < t < T at instant T has been solved by Bulgakov 
and Kuzovkova [1,2 I. An analogous problem for linear difference equations 

has been treated by Roitenberg [ 3 I. However, in a number of cases much 

more rigid conditions are imposed upon the right-hand side of the equation, 

i.e. in addition to the constraints on the modulus of f(t) there may be 

also constraints on the moduli of some of its derivatives such as f’(t). 
f’!(t). This situation may be observed in systems where position, velocity, 

and acceleration of the controlled object are constrained. In the presence 

of such additional constraints on the right-hand side of the equation, 

the magnitude of ymax (T) may be considerably smaller than in the case of 

a single constraint on (f(t) I. In this paper a method of determining the 

maximum value of ymax (7’) of the particular solution of the linear diffe- 

rence equation L(y(t)l = f(t) is given for the following cases 

1 f’““ (t) 1 < M rn’ m>O 

I f It) I < MO* I f’ (t) I <Ml? If” (t) I < MS 
1. Let US consider the following equation 

Y (t + n) + Pi(t) y (t + n- 1) + . . . i-P,(t) y(t)= f(l! 

(0.1) 

(0.2) 

(f-1) 

Its particular solution is of the form 

Lfl-1 

Y(t) = 2 $Ji (t)f(t -rq + i) (1.2) 
i=O 

Hereafter the symbol [ t ] will denote an integer of time, functions $i(t) 

will be defined by a linearly independent system of solutions of a homo- 

geneous equation corresponding to equation (1.1). 
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Let us determine ymax (7’) for the following case 

I I(*) (U) I < Jf m (n>O, O,(u<T) (1.3) 

For simplicity let us assume that 

, (9) = j’ (0) =. . . . . Y j(‘*--1) (0) z () (1.4) 

The general case may be treated in an analogous manner. Taking into 

account (1.4). we have 

(1.5) 

Substituting (1.5) into (1.2). we obtain 

VI--1 

y (7’) = 2 *i(t) 

T-ITIfi 
\ &--& f(m) (U) (T - [r] + i - u)m-1 du - 

i=O 0 

(1 6) 

T-1 T-l 
-17 

s 
(EL) (T - [T] + i - u)~-~ du = 

s 
jcm) (u) F, (u) du 

0 i=o 0 

El-1 

F, (~1 = 2 &-- 
f=O 

1) 1 Ai (u) (T - [‘I’] + i - 24)*--l (I.81 

Function F,,,(u) has a finite number of discontinuities in the interval 

[O, T- 11 and is bounded. It follows from (1.6) that y(T) will assume 

maximum value permitted by (1.3) at the time T, if the following is true 

2. Let us seek maximum possible value ymaxCT) of the particular solu- 
tion of equation (1.1) at the fixed time T. if the right-hand side of 

(1.1) is subject to the following constraints: 

where Mu, MI, and M2 are arbitrary constants. Let us note in passing that 
the problems of determining ymax(T) for the conditions 

or for the conditions 
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are special cases of the problem under consideration. 

(2.3) 

The problem of 

is reduced to the 

As before, for 

f(0) = f’(0) = 0. 

Fig. 1. 

determining y,,, (7’) for the condition 

I f’ @I I <Ml, I f” (u, I < fifg (2.4) 

problem of determining ymax (T) for the condition (2.2). 

the sake of simplicity, the assumption is made that 

Taking I = 1 in (l-6), we obtain 

T-I ET]-1 ,. 

Y(T)= - I Fl (u) I’ (u) du, Fl(u) = 2 A,(u) (2.5) 

a i=o 

Function F1(u) is constant over each half-interval (I’- [ 7’1 + i. T- 

[Tl f i + 1) (i = 0. 1, . . . . [Tl - 2) and over the interval [ 0, T-L ~31. 
Let the interval [ 0, T - I 1 possess k intervals (uj I, Uj,r) (j = 1, . . . , 
k) where Fl(u) assumes maximum and minimum values as’compared with its 

values over the intervals on either side (Fig. 1). It is assumed that the 

following conditions are satisfied: 

“j+1, I - Ujf 2 2L1 (j = 1, . . *, k), ull>Ll+Lg V-6) 
where 

“k-j-1, l=T--l 

for -, M12 > M, 
MZ. 

Consequently, for the given equation (1.1) we consider only those 

values of M1 and M2 which satisfy the above inequalities for a fixed value 

of MO. However, even in this case (constraint on 1 flu) 1 and 1 f”fu) 1) the 
magnitude of the maximum accumulated error may be considerably smaller 
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than in the case of a single constraint on 1 f(u) 1. 

Conditions (2.6) permit one to solve rather simply the following de- 

generate variational problem: among functions of class A (these functions 

satisfy conditions (2. 1) and their second derivatives over the interval 

LO, T- 1 I may have a finite number of d&continuities of the first kind) 

find function fmax (u) such that the functional (2.5) is maximum. Con- 
struction of f,,, (u) (thereafter to be called maximum function) is carried 
out in the following fashion: an arbitrary function of class A is trans- 

formed step-by-step in such a manner that the transformed function would 

remain in the class A and the functional (2.5) would increase. The func- 

tion obtained in the end of this process shall be independent of the 

choice of f(u) and shall be maximum. Let us first introduce the following 

definition. 

Let there be given functions &u) of class E in the interval {a,, -1 

and satisfying the following conditions: 

Here the point u,, is fixed and the point u 
‘45 

depends on the choice of 

functions $3(u). 

Let to every pair of values 6(u). +‘(a) correspond a point B($(u), 

4’-(u)) in the N plane. Function #1(u) of class E will be called the 
optimum function which in the interval [ ao, a+’ realizes the transfer 

from the point B. (bo, bO1) to the point B,(b,, O), 

corresponding to q$ (u), 

if for the point ~4~. 

&-t;;c;here. “+ 

the following inequality is satisfied UQ~~- uO ( 

corresponds to an arbitrary function c$(u) of class E. 

uniqueness, and construction method of the optimum function 

4 (u) are’shown in [ 5,6 I. 

In the interval [ - 00, uO 1 there also exists a unique optimum function 

C&(U) which in the interval [ uu, a 1] 
(R 

(where u 
P 

< u,,) realizes the trans- 
fer from the point R(bO, b,,) to t e point B1( 1, 0). 

In order to distinguish between these two optimum functions we will 

specify the sign of the expression u #l - uo* 

Let us now consider one of the segments 1 ui [, uj + 1, l] . To simplify 

the notation let us discard the index 1. 

In order to be specific. let F1(uj+ 1 1 > F1(uj). Let us determine the 

function g.(o) in the interval f uj, ui+ 1 1 (see Fig. 2). In the interval 
Eu., u. l’where U. - U. > 0 the function g.(u) shall be the optimum 

fukti%lrealizingf~be tiansfer from the poiit B.(f(u.), f’(uj)) to the 

point B-(- MO, 0) of the N plane. In the intervil [ uI+ I e, uj + 1l where , 
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'j+ 1.0 
from 

s y+- 1’ 
the 

gj(u) is the optimum function realizing the transfer 

point Bj+ 1 (fCUj+ 1). f’CUj+ 1 )) to the point B- (-MO, 0). In 

the interval [ail, uj+ 1,ol the identity gj(u) 3 - MO holds. Taking into 

account that gj(Uj) = f(uj), gj(u-+ 1) = f(uj+ 1) and that f(u) belongs 
to the class A, it is not difficu i t to show that u. 

Jll - ‘j ( ‘1, ‘j+l- 
u.+~,~ < L1. Since ujfl - uj >2Li. the conditions introduced during 

t e definition of gj(u) are not contradictory. It also follows that h 

I gj(‘)I < MO in the interval [ uj, ‘j+ 1 1. 

Let US now change the function f(u) to gj(u) in the interval [ uj, ‘j+ 1 I 

and prove that 

“i+1 2Li+1 
K(i) _ 1 Fl(")gj'(U)du- ) Fl(U)f'(U)dU>O (2.7) 

?Lj ui 

Expressions (2. ‘7) may be written as follows: 
(2.8) 

Uii* uil 

S kj’ (~1 e-f’ (u)l FI (u) du + 1 
“ISl, 0 

[gj’ (‘J) - f' (~)l ‘1 (u) du - 
“,Z1* 

1 I’ (fc) Fl(u) du + 
“j ujl 

++I. 0 
1 

?+I 
+ [gj’ C”) - f' (“)I F1 t”) du + 

s 
I$ (~1 - f' (u)l FI (~1 du 

v+1,0 uj+1, o* 

Here u.< U. *< U. 
J1 Jl’ 

If uj < ujl 

f’(u) intirsect at the point U. *. 

* < ‘jl* then the curves gj’(u) and 

From the properties of the optimum 

functions [ 5.6 1 it followS th:t’in the interval [ uj, u. 1 there can be 

no more than one point of intersection of the curves 
rl 

furthermore. that in the interval [ uj, 

gj (u) and f’(u) and, 

ujl*l gj’ (u) - f’(u) < 0. An ana- 

logous remark can be made regarding the point uj+ 1 o*; furthermore. in 

the interval [ Use + 1 o, uj+ l] gj’(u) - f’(u) ) 0. ior the first, second, 

fourth, and the fifth integrals of the right-hand side of (2.6) the con- 

ditions necessary for the application of the mean value theorem are 
satisfied. This theorem is not applicable directly to the third integral. 

However, dividing (ujl, uj+ l,o) into the intervals over which f’(u) does 

not change sign, and applying the mean value theorem over these intervals, 

it is possible to obtain the following inequality 

uj+1.0 uj+;. 0 

- \ Fl(u)f’(u)du~--l(u,‘) \ f’(U)du 
. 

@jl < +* < uj+1, 0) 

"jl "jl 

Applying the mean value theorem to other integrals we obtain 

6 

K(j) 2 2 F1 (ui*) K,(j) 
i=l 

P-9) 
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and, consequently, 

Since the boundary conditions for the functions gi(a) and f(u) coincide 
at the points aj and a. Jf 1’ then it follows that 

It is obvious that 
Ki(j) + . . . + ark -= 0 

K,(j) + KS(j) < I), Kp’ -+ h,(j) g3 0 

(2.11) 

(2.12) 

and from (2.9) to (2.12) it follows that g(j) z 0. 

If the inequality Fl(“j) > FI(u .+ 1) were satisfied. then in the inter- 
vals f a 

j’ aj,] and [uj+ I,69 aj+ l!I the function gj(u) would be defined 
as the optimum function realizing the transfer from the point Rj(f(uj), 

f’(uj)) to the point B+(M6. 0) on the N plane in the interval [u., ail]; 
and as the optimum function realizing the transfer from the poini 

Uj+ 1)) to the Point B+ (MO, 0) in the interval [ aj + 1q 

in the interval (u. Jl’ . Uj + 1 6) we shall have gj(u) z MO; in this 

Let US now define the function g(u) in the interval [O, T7 11 as 

follows. The function g(u) = gj(a), 

(j = 0, 1, . . . . 

if a lies in the interval [u., uj+ ,I 

kt. It is obvious that g(u) belongs to the A clak of the 

functions under consideration, ( .I and since X j ) 0 for any interval f uj, 

uj+ ,I, then replacement of f(u) by g(u) in the interval 10, T - 1 1 can 
only increase the functional (2.5). If F(uj) < F(uj + 1) then changing 

g(u) will result in the corresponding transfer of the point R(g(u). 

g’.(u)) on the N Plane from ghe point Bf(MO. 0) to the point B- (-MO, 0). 

Let us note that the Point ujO in the interval (uj_ I, uj) is defined 

(Fig. 2) analogously to the point uj+ 1 O in the interval (uj, uj + 1). . 

Let B(u - j. c. ) be the optimum function realizing the transfer from the 
point A” (MO, 0) of the N plane in the interval 

"j0, Cjll. 

0) to the point B- (- M,, 

This function is easy to construct. 

Expression for E” (a - c. ) over the interval [ cjO, cjl] for the case 
JO 

when l/2 M1*/hiz < MO is of the form 
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E”(u-eCjo)=--MS for ~onfe, c. +!!!A] ,. 30’ 30 iv% I 

S” (u - co) = 0 

E”(u- c$J = Mz 

The formula is just as simple for the case when if2 H12/M2 > MO. 

E(u - ejo) is the optimum function and, consequently, Cjl - Cjo C ujl- “jo. 

Since F1(u) does not increase in the interval (Ujo, Uj) and does not de- 

crease in the interval (uj, ujl), then it is possible to choose the in- 

terval Cc .o, 

E 

cjl) in the interval (bin, J1 U. ) such that any value of the 

function ,(u) over this interval would not be less than the values of 

Flfu) over the intervals (ujO, cjo) and (cjl, ujl). 

If F,(“i) > F1(Uj+ 1 ), then changing g(u) in the interval [ Uj3, UjlI 

will result in the corresponding transfer of the point B(g(u), g .(a)) 

from the point B- (-MO, 0) to the point B+ (MO, 0). Let E1(u - cjo) de- 

note the optimum function realizing the transfer from the point B- (-Mot 

0) on the N-plane in the interval [ cjO, ‘jl 1. 

It is obvious that E1(u - cjo) = - E(u - cjo), and that it is possible 

to choose the subinterval (cjO, cjl) in the interval (Ujo, ujl) such that 

any value of F1(u) over this subinterval would not be greater than any 

value of F1(u) over the intervals (ujo, Cjo) and (Cjl, ujr)* Let US re- 
place the function g(u) in the interval [ 0. T- 1 ] by the function h(u) 

which is defined as follows: 

h (u) = f E: (U - cjo) on (c~,,, c ji ), h(u) = Zk MO on (“ju, Cjo), ?l (U) I= T.44 on (Cjl, ujl), 

here the upper signs refer to F,(ujf < FI(uj+ ,I. while the lower signs 

refer to F1(~j) > Fl(uj+ $1. 

If the point a does not belong to either of the intervals (ujo, ujl), 

then we set h(u) = g(u) (at these points ] h(u) 1 = M,,). Since h(u) belongs 
to the A class of the functions 

under consideration, then by apply- 

ing the mean value theorem, it is 

easy to show that the replacement 

of f(u) by h(u) can only increase 

the functional (2.5). Now in order 

to increase y(T) we can vary the 

Fig. 2. 
position of the points cjo(j = 1, 

. . . . k). 

In order to determine the point cjO we must maximize the following 



1634 

expression 

L.S. Gnoenskii 

(2.13) 

The point c 
JO 

is the root of the equation 

cjo+L 

CD’ (C,, = - 
s 

F, (u) E” (U - Cj*) du = 0 (2.14) 

cjO 

Substituting the expression for E’< (u - cjO) into (2.14). we obtain 
(2.15) 

It is easy to show that in the interval (uj - L, uj + L) this equation 
will have at least one real root and that the expression (2.13) will 
attain the same value for any real root lying in this interval. Let us 

denote the function h(u) with cjo as the roots of (2.14) through fmax(u); 
this is the maximum function. Let us note that the maximum function may 

attain the same value not be unique but that the functional (2.5) will 

for any maximum function. 

Taking into consideration the form of f,,,(u) and applying the mean 
value theorem, ymax(T) may be represented as fol lows: 

If M2 + 0, MI + m, then L, + 0. L + 0, and consequently, in this case 

we have 

(the last equality is obtained on the basis of (1.7) and (1.8) and in 
this fashion we arrive at the case investigated by Roitenberg [ 3 I ). 

Remark 1. The above method of constructing maximum function also applies 

to linear differential equations. 

ReDlark 2. It is obvious that the above method permits one to determine 

ymax(T) in the following nonlinear automatic control system 
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L, and L, are linear differential operators. the dots denote derivatives 

with respect to time. 

Example. Let us determine the maximum value ymax(T) for T = 13 of the 

particular solution of the following equation 

Y (t + 2) + 1.75 Y it -+- 1) + Y (f) = B(t) (2.18) 

for the following cases 

Using the above method, we find that in the first case ymax (T) = 19, 

in the second case ymax(T) = 24. Thus, if the constraints on f’(u) and 

f’<(u) are not taken into account the value of y,,,(T) increases by 25 

per cent. 
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